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A RAPID GRAPHICAT, METHOD FOR COMPUTING THE PRESSURE
 DISTRIBUTION AT SUPERSONIC SPEEDS ON A SLENDER
ARBTTRARY BODY OF REVOLUTION
By Jim Rogers Thompson

SUMMARY

A method is presented by which the pressure distribution on a
slender, arbitrary body of revolution moving at supersonic speeds at
zero angle of attack may be calculated with an appreclable saving of
time as compared with that requir8d by other methods. The method was
developed from the lindarized potentlal—flow relations glven by Jones
and Margolis in NACA TN No. 108l and is essentially a graphical computing
technique based on the assumption that a body mey be represented satis—
factorily by a relatively small number of polnt sources and sinks. An
oxample is presented to 1llustrate the computational procedurs.

Ths method gives results for parsbolic bodles In excellent agreement
wlth results obtained by the method of Jones and Margolis. It was found
that a parabolic body of fineness ratio 6 could be represented satis—
factorily by as few as 10 sources and sinks.

Pressure dlstributions computed for the German missile ALYVIP
at Mach numbers of 1.87 and.1.56 are compared with wind—tunnel measure—
ments and with results of calculatlons by the characteristics msthods
of Sauer and Tollmein to provide some information on the accuracy and
reliability of the method presented herein when applied to arbltrary
shapes. Although the body of the A4VIP is somewhat more blunt than
would be desirable for treatmsnt by linearized methods, the method
presented. reproduces the sallient features of tho measured pressure
distribution with comparatively small discrepancies.

IRTRODUCTIOR

The problem of computing the pressure distribution on a body of
revolution moving at supersonic speeds has been treated by several
authors (references 1 to 6) with varying degrees of approximation.
References 1 to 5 present methods based on the isentropic linearized.
potential—flow equation firgt applied to the problem by Von Karman
In reference 1. A more rigorous method based on the method of character—
istics 1s also presented 1n reference 5 and 1s gensralized by Ferri
in reference 6 to include nonisentropic rotational flows. The usefulness
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2 NACA TN No. 1768

of these methods for the design of supersonic aircraft or missiles has
been severely limlited, however, by the excessive labor Involved in
the computations. '

Jones and -Margolis (reference 4)- and Lighthill (reference 3) have
shown that, for certain mathematical body shapes, the pressure digtribution
may be obtained in the form of relatively simple equations. In general,
however, the designer cannot utilize these simple mathematical shapes
exclusively because of other requiremsnts of the design; for example,
providing vision for the pilot or seeker, tankage space equally distributed
about the center of gravity, and shape changes t0 allow simpler or
strongsr construction. In addition, the possibllity exists that body
shapes other than those specified by simple mathematical relations might
have the lowest drag, particularly when these- shapes are combined with
wings to form a practical alrplane or missile configuraticn. The need
of a rapid method for computing the pcregsure distribution on arbitrary
bodies 1s therefore evident.

An approximate method for computing the pressure distribution on
slender, arbitrary bodies of revolution moving at supersonic speeds and
zero angle of attack is presented herein. Use of a graphical computing
technique allows the pressure distribution to be obtained at an appreciable
saving in time as compared with other methods. The method (which is
referred to hereinafter as the "point—source method") was developed from
the results of Jones and Margolis (reference 4) and 1s based on =a
simplifying assumption concerning the source distribution used to represent
thes body. The validity of this assumption in the case of parabolic bodles
is examined by comparison of resulbs obtained by the point—source method
with results obtained by the method of Jones and Margolis.

Although results obtalned by the point-source method are subJect to
the uncertainties inherent in the linearized potential—flow equations
and to additional uncertalnties dus to the graphical approximations used
in the computations, the method is belleved to provide a quick and useful
means for comparing the supersonic characteristics of slender, arbltrary
bodies of revolution. Some information concerning the reliability of
the results was obtained by comparison of pressure distributions computed
by the point-source method with calculatlons by the characteristics method
apd with wind—tunnel measurements presented in references7 and 8 for the

German missile A4VIP.

The computational procedure for the point—source method is
11lustrated by an example.

SYMBOIS

P pressurs coefficlent

x,r cylindrical coordinates
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t abscissa of source or sink (measured along x-exis)
£1(¢) rate of change of mource strength (with x)

R radius of body

F fineness ratio of body
8 half. angle of cone

Q pressure function (£(&)Ax)
Ox interval length '

n posltive Integer

k constant

M Mach mumber
B =

VM2 — 1

Subscripts indicate that the value of the quantity belng consldered
is taken at that particular point. Subscript o refers to the nose of
the body.

DEVELOFMERT OF METHOD

In reference 4 Jones and Margolis show that a slender body of
revolution moving at supersonic speed with zero angle of attack may be
approximated by an infinite number of sources or sinks located on the
axis of the body and that the pressure coefficlent P at any point x
on the body surface ls given by

: I-;ﬂRx ‘
P -2 PY(E) 4t (1)

x,  Vix- 82— ()2

where f'(t) is the first derivative of the function

2(8) = E?(%)]g (2)

Explicit relations may be easily obtained from equations (1) and (2) for
the pressure distribution -on cones and on parabolic bodies. TFor ar‘bitrary
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bodles, the pressure distribution can also be computed directly from
equations (1) and (2) (provided that #£(t) is a continuous function

of x) by either analytical or graphlcal procedures; however, the
graphical approach involves extenslve computation and a separate graphical
integration for each point considered, and the analytical approach
involves the approximation of the body shape by a sultable expression

and (except in special cases) difficult and tedious integration.

Equation (1) may be written as

o =) i | (3)
: 1=J,,\/(x — £4)2 — (BRy)?

where each of the n point sources located on the axig of the body
ahead of (x — BRy) represents a section of the body of lemgth Ax.

Comparison of equation (3) with equation (1) shows that

Q = f*(&)Ax (1)

It 1s evident that, if the arbitrary body may be adequately represented
by a relatively small number of polnt sources,-ths pressure distribution
may be calculated raplidly by use of equation (3). The computation is
greatly facilitated by the direct proportlonality between the pressure
coefficient and the value of Q for a single source. (See equation (3)
for n = 1.) This direct proportionality allows the pressure field for
a single source to be computed once as,a function of Pr and used for
any source or sink at any Mach number within the limitaetions of the
basic equations. This universal pressure field may be convenlently
plotted as a "grid"™ of lines of constant pressure coefficient on

the x,Br plane. Values for this grid computed from equation (3) )
(for n = 1, Q = 0.01, & = 0; that is, a single source having a convenient
value of Q and located at the origin of the grid) are presented

as table I. The grid 1s plotted in figure 1. The pressure distribution
over the body due to a single source representing any section of the
body of length AX msy be readily obtained graphically by superimposing
the origin of the grld at ths source location on a drawing of the body
shape (plotted as PR against x), and reading the pressure shown by
the grid at a number of points on the body surface, and then multiplying
these pressures by the ratlo of the @ for the source being considered
to the value of Q <for which the grid was prepared. The process 1s
repeated for each source necessary to represent the bedy, and the pressure
coefficlient at any point is obtained by adding the pressures at the
polnt due to each source.

If the body’is t0 be satisfactorily represented by a small number
of discrete sources, the location of a source within its section of the
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body will be important. It was found (see appendix) that the point source
should be located on the axis Ax/h ahead of the rear end of the section
of the body of length Ax which it represented and the @ for the

source should be computed from the radius and slope of the body surface

at the source locatlon. With this source location and strength, the
Pressures on the body surface at and behind the intersection of the Mach
line from the axis at the end of the intervel with the body surface
closely approximated the pressures obtained from a continuous distribution
of sources along the axis of the section. As the pressures on the body
due to a number of sources are swmmed only at the intersection of the
Mach line from the end of each iInterval with the body surface (see
appendix), the infinite pressures which equation (3) gives for x = E + Br
(along the Mach line from each source) are avoided. The validity of
results obtained by the point—source method and the computational
Procedures used are demonstrated by an example.

EXAMPTE
Computation of a pressure distribution by the point—source method

1s accomplished in the following steps:

(1) Divide selected body shape into sections and determine source
locations.

(2) Graphically compute pressures on body due to sources of = 0.0L
by successive superposition of grid on body shape plotted as BR against x.

(3) Prepare tabular form for recording values.
(4) Determine velus of @ for each source.
(5) Compute pressure on body due to each source.

(6) Sum pressures due to each source to obtain desired pressure
dlstribution.

A parabolic body of fineness ratio 12 was chosen for this example
as representative of bodies suitable for treatment by the linearized
theory and because it could be easily treated by the method of Jonses
and Margolis (reference 4) for comparison. The pressure distribution
was computed at a Mach number of 1.4l1.

JEEZZv— The body shape is specified by
1 2
R=—=(1-4

Equation (5) describes a parabolic body of unit length symmstrical about
1ts maximm diemeter which is located at x = O. The body was arbitrarily
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divided into 20 sectlions of equal length (Ax = 0.05), and, as described
in the mreceding sectlon, a source location was chosen Ax/h ahoad of
the end of each section.

Graphical computations.— The successive superposition of the grid
origin at the chosen values of £ 1s accomplished by plotting thes grid
and body shape to the same scale on separate sheets of semitransparent ’
coordinate paper and matching the two sheets on a glass surface lighted
from behind. A convenient size for the grid for most purposes has been
found to be 10 by 15 inches with the PBr-scale 10 times the x—scale.
The grid (fig. 1) should be plotted carefully from the data of table I
and can, of course, be used for all bodies and Mach numbers. The body
shape (plotted in the form PR against x) is shown in figure 2 with
the grid origin superimposed on the source ¢ = —0.2625 which represents
the section of the body between x = —0.30 and x = -0.25.

Table.— A convenient form for tabulating the values obtalned in the
computation i1s presented as table II. The abscissas of each of the
20 sources are arranged vertically in two sets on the left of the table
and the values of P used for the grid are used for column headings.
The values of x at which the lines of constant P of the grid cross
the body surface are recorded in the appropriate column in the upper part
of the table. For the case shown in figure 2 (¢ = —0.2625) the values
of x Iin table IT are underlined.

The last coluwm in the upper part of table II, headed x5, glves the
values of x at which the pressures due to each source are to be summed.
These values are obtained by superimposing the grid origin at the end
of the interval and reading the value of x on the body where the
line of P = « (Mach line) crosses the body surface. For the interval
Just mentioned (& = —0.2625), the grid origin is set at x = -0.25 and
the value found for x, is —0.216. :

Determination of @ for each source.— In this example the values
of Q for each of the 20 sources msy be found easlly by use of
equations (2), (4), and (5). In the more general case of the arbitrary
body with which this paper is concerned, however, the value of Q for
each source must be determined from the ordinates of the body by use
of the differential forms of equations (2) and (4) as shown in figure 3.
Any convenient increment may be used to determine the variation
of R(dR/dx) with x from the variation of R with x (lower part
of fig. (3)). However, as the value of @ must be determined at the
gource location, A[R(dR/dx)] is taken from the midpoint to the end of
the intervael and multiplied by 2 (upper part of fig. 3). The ratios
of the value of Q determined for each source to the value of Q wused
. to prepare the grid (0.01) are tabulated in the last column of the lower
part of table II opposite the value of £ for each source.

Computation of pressures on body due to each source.— The data in the
upper pert of table LL is the pressure distribution over the body if all
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the sources have Q = 0.01. As the pressure at any point due to one
source ls directly proportlional to the value of Q, the actual pressure
distribution on the body due to the source is determined by mmltiplying

Q
the value of P heading each column by the ratilo 3 for the
. id
particular source being considered. The resulting P i1s entered in the
lower part of table IT. TFor example, for the source & = —0.2625, the

Q

ratio € 15 -0.0118 and the pressure coefficient at x = —0.210
14

(upper part of table, line ¢ = — 0.2625, column P = 0.5) is

P = —0.0118(0.5) = -0.0059 (lower part of table, line ¢ = —0.2625,
column P = 0.5). For the same source the pressure coefficient
at x = —0.132 (upper part, line ¢ = —0.2625, colum P = 0.16)
is P = -0.0118(0.16) = —0.0019 (lower part, line ¢ = —-0.2625,
colunn P = 0.16). These values are bracketed in table II.

Summatlon of pressures due to esach source.— The pressure coefficients
for each source tebulated in the lower part of table II are plotted against
the corresponding values of x at which they occur (upper part of table II)
in figure 4. The logarithmic ordinate scale is used so that the points
are separated at low values of the pressure coefficient. Curves are
faired through the polnts for each source and all of the curves are added
at the summation points previously determined (last columm, upper part
of table II). These sums and the values of Xy at which they occur are
the desired pressure distribution on the body. The pressure coefficient
at the nose of the body is computed directly from equation (AL)

(see appendix) under the assumption that the extreme nose of the body
approximates a cons. ’

Computation for different Mach numbers.— In order to compute the
pressure distribution on the same body at a different Mach number, the
body shape (in the form BR against x) must be replotted and the data
in the upper half of table II redetermined. The data 1n the lower half
of table II are not changed and the pressure distribution ls computed
from the new table exactly as In the preceding example.

Time required for computation.— Once the grid has been prepared,
computation of a 20—point pressure distribution for an arbitrary body
by this method required ebout 8 man—hours and, for the same body, results
msy be obtained for a different Mach number in about 4 additional man—
hours. For parabolic bodles only the same number of points can be
computed by the method of Jones and Margolis (reference 4) in somewhat
less than half this tims.
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EVATUATTON CQF METHOD

Comparison with results by methad of Jones and Margolis.— The
pressure distribution determined in the example (fig. L4) is reproduced
in figure 5 together with the pressure distribution computed for the
same body by the method of Jones and Margolis (reference 4). The
expression for this pressure distribution may be obtained from
equations (1), (2), and (5) and is (see reference L)

Py = E% [l?_x2 -1+ 6(BRx)2] cosh L (x ;Rio>

+ 6[(x — x0) — bx]y/(x = 20)2 — (BRp)2 (6)

Examination of figure 5 shows that the pressure distribution determined
by the present method agrees with that of Jones and Margolis except for
a small and apparently random scabter which approximately corresponds
to the uncertainty of the graphical and mumerical computations.

In order to investigate further the uncertalnties introduced by the
approximations Involved In the polnb—source msthod, the pressure distri-—
bution was calculated for a parabolic body of fineness ratio 6.

Inssmuch as large pressure coefficlents and gradients are encountered
for the body of fineness ratio 6 at M = 1.L41, discrepancies should

be more sasily discernable than in the case of the body of fineness
ratio 12. The results of this calculation for 10 and 20 intervals

(Ax = 0.10 and 0.05) are compared in figure 6 with results calculated
from equation (6). This fineness ratio was chosen because it approxi—
mates the lower limit of finensss ratio for which the linearized theory
gives a completely supersonic flow fisld about the body at a Mach
number of 1l.41. It is interesting to note, however, that recent results
obtained by the NACA wing—flow method showed that pressure distributions
of the type predicted by Jones and Margolis occurred for a body of
fineness ratio 6 at a much lower supersonic Mach mumber even though a
large subsonic region was present at the nose.

Figure 6 shows that once more the results of the present method
agree closely with those of Jones and Margollis. The scatter of the data
in figure 6 (body of fineness ratio 6) appears to be somewhat greater
than the scatter of the data in figure 5 (body of fineness ratio 12).
Such a result might be expected because of the steeper gradients
encountered on the body of fineness ratio 6. ILittle difference is
evident in Pfigure 6 between the results for the two different intervals.
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As additional computations for the intervals of 0.02 (50 sections) near
the nose of the body showed no signlficant difference from the results
presented, 1t is concluded that the results obtalned are not appxeciably
affected by the interval size (within the range investigated) and that
a parabolic body may be satisfactorily represented by as few as 10 sources.
The method does not require that a constant Iinterval length be used and
for arbitrary bodies it 1s recommended that shorter intervals be used in
reglons where the body cross section is changing rapldly.
' rd

The small discrepancies between the results computed by the point—
gource method and the method of reference L4 are negligible in comparison
with the wncertaintlies lntroduced into both methods by the ggsumptions
involved in the linear theery from which equations (1) and (2) are taken.
The linear—theory results have been shown by several authors (for
example, reference 2) to be in error by as much as 20 percent at some
Mach mumbers in the case of a 10° cone.

Comparison of results by point-source method with results by
characterlistices methods and with wind—tunnel measuremsnts.— Soms
information on the usefulness and religblllty of the point-source method
may be obtalned by comparison of results with results of calculations
by the characteristics method and with wind—tunnel measurements for
the German missile AUVIP presented in references T and 8. Pressure
distributions measured at Mach numbers of 1.56 and 1.87 are presented
in reference T and these measurements are compared with calculations by
the graphical characteristice method of Tollmein and the computational
characteristics method of Sauer in reference 8. The body shape of
the ALVIP is not particularly suited for calculation by linearized
methods because of the bluntness of the mose (ogival nose having a nose—
length to maximum diameter ratio of 3.5, nose half angle 15.9°. However,
the AYV1P is the only body for which relatively complete experimental
data are avallable, and the comparison should indicate the accuracy with
which the method predicts the pressure dlstribution on such relatively
blunt bodies.

The measured pressure—distribution points and failring (solid line)
reproduced from reference T are shown in figure T together with the . -
results obtained by the method presented hsrein (dash 1ine). Exemination
of thils Pigure shows that the point-sourcesmethod satisfactorily reproduces
the salient features of the measured pressure distribution but shifts the
sharp breaks which occur at the beginning and end of the cylindrical
section toward the rear of the body. The magnitude of the maximm positive
and. negatlive pressures are also somewhat exaggerated.

The fairing of the experimental data and the pressure distribution
calculated by the point—source method shown in figure 7 are reproduced
in figure 8 where they are compared with calculations by the characteristics
meothods of Sauer end Tollmein (reference 8). Figure 8 shows that Sauer's
calculations agree closely with the experimental results and Tollmein's
agree less closely, particularly near the middle of the nose and on the



/

10 NACA TN No. 1768 .

cylindrical sectlon of the body. The calculation by the point—source
method agrees closely with that of Tollmein near the nose of the body, the
most obwlous dlscrepancy belng the exaggeratlion and rearward shift of

the minimum pressure pesek near the beginning of the cylindrical section
previously mentioned.

A comparison similar to that shown in figure 8 is presented in
figure 9 for a Mach number of 1.56. In general, this comparison shows
the same results as does figure 8; however, the overestimation of the
pressures on the nose by the characteristics methods, which was barely
visible in figure 8, is increased appreciably at the lower Mach mumber.

\ .
It will be noted that none of the calculated pressure distributions
agree with the measurements on the rear oglve of the missile. Reference T
states that the pressures in this region are greatly affected by the
four large stabilizing tail fins which were 1n place when the mesasurements
were made. Also, these pressures could be subject to large boundary—
layer effects.

The sharp breaks in the mressure distributions for the ALVIP are
characteristic of the class of bodles having cylindrical center sections
faired into a curved nose and/or tail sectlon so that the second
derivative of the radius with respect to x is discontinuous. It is
apparent, however, that the minlmm pressure peak computed from
equations (1) and (2) always occurs at a distance PR behind the
beginning of the cylindrical section rather than at the beginning of the
cylindrical section where the experimental results and rigorous theoretical
treatment show it must be located. The occurrence of the rearward shift
for one class of bodies suggests that such a shift may be present in the
pressure—distribution results computed from equations (1) and (2) for
other types of bodies. Extensive experimental pressure—distribution
measurements are required to verify the existence of the shift for
arbitrary bodies, however.

Inasmich as the approximations involved in the linearized theory
become more representative as the body becomes more slender and because,
in general, slender bodies are better suilted for aerodynamic purposes,
the method presented herein is believed to provide a useful means for
rapld estimation of the pressure distribution on slender, arbitrary
bodies of revolution suitable for use as supersonic alrcraft or missiles.
Insufficlent experimental evidence 1s available to establish definitely
the 1imits of applicability of the method; however, it appears doubtful
that results of usable accuracy could be obtained for bodies more blunt
than the ALVIP used as an example herein. °

DNlustration of change in pressure distribution resulting from a
moderate change in body shape.— In order to illustrate the magnitude of
the changes in pressure distribution which result from moderate change
in body shape the pressure distribution calculated for the test body of
fineness ratlo 12 used in the Langley Free-Fall Test Program is shown
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i

in figure 10 compared with that for a parabolic body of the same fineness
ratio. The body shapes are compared in the lower part of the flgure.

The free—fall test body was derived from an NACA low—drag airfoil and
had a cusped tall faired into a tail boom and a relatively blunt nose.

Some indication of the over—ell accuracy of the pressure distribution
calculated for the free—Ffall test body may be obtained by comparison
of the drag coefficlent obtained by integrating the pressure distribution
with the experimentally measured value. The computed value (0.080) is
in good agreement wilth experimental results if a skin—friction coeffi-—
clent of 0.003 based on surface area is assumed. Exemination of
figure 10 shows that the free—fall test body is more critical than the
parabolic body with respect to flow separation because of the steep
adverse gradient encountered near the rear of the body.

CONCLUDIIVG REMARKS

A method is presented by which the pressure dlstribution on an
arbitrary body of revolutlon moving at supersonic speeds may be calculated
rapidly. The method was developed from the linearized potential—SLlow
relations reported by Jones and Margolis in NACA TN No. 1081 and by
other authors.

The method is essentially a graphical computing technique based on
the assumption that a body may be represented satisfactorily by a
relatively small number of polnt sources and sinks. Pressure distri-
butions computed for parabolic bodies by this method were in excellent
agreement with the results of Jones and Margolis. As few as 10 sources
and sigks satisfactorily represented a parabolic body of fineness
ratio 6. :

Comparison of pressure distributions calculated for ths German
missile ALVIP with wind—tunnel measurements showed that the point—source
method reproduced the salient features of the measured pressure
distribution, but that the minimum pressure peak was exaggerated and
shifted to the rear.

Pressure distributions for the AUVIP at Mach mmbers of 1.87 and 1.56
computed by the point—source method were somewhat less satisfactory
than those computed by the characteristics methods of Tollmein or Sauer.
However, as the time required to compute a pressure distribution by
the point—source method is appreciably less than is required by elther
of the two characteristics methods and as the salient features of the
pressure distribution are satisfactorily reproduced, the point—source

-~ s T PSSR -~ - e e - e emmmm s s o an ae m—— e e o
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method 1s belleved to provide a useful means for rapid estimation of
the pressure distribution on slender, arbitrary bodies of revolution
suitable for supersonilc aircraft or missiles.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

. Langley Field, Va., September 23, 1948
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APPENDIX

LOCATION OF A SINGIE SOURCE EQUIVALERT TO A CONTINUOUS

DISTRIBUTTON OF SOURCES WITHIN A FINITE INTERVAL

In the linearized theory of supersonic flows (references 1 to 5)
bodies of revolution are assumed to be represented by a continuous
distribution of sources and sinks along the axis of the body and the
Pressures resulting from these sources and sinks are assumed to be
propagated only within the Mach cones. Thus, if an interval of.
length Ax extending from the vertex of a semi—infinite cone is
consldered, 1t 1s apparent that only at the intersection point (thse -
intersection of the Mach cone from the axls at the end of the interval
with the cone surface) is the pressure influenced by all of and only by
that part of the continuous source distribution within the interval. As
the rate of change of source strength f'(t) is constant for a cone,
the locatlon -of a single source which causes the same pressure at the
intersection point as does the continuous distribution of sources within
the interval may be determined in the following manner.

The pressure coefficient on the surface of a cone .of semivertex

angle 6 dus to a continuous distribution of sources along the exis may
be found from equations (1) and (2) to be constant and equal to

P = 2tan® cosh EEE—Q> ‘ : (A1)

The pressure coefficient on the surface of the conse at any point b'd
due to a single source located at £ is (see equation (3) for n = 1)

_ E
V(x — €)2 — (Ry)2
As for the cone (with vertex at +he origin)

.(Aa)

R =x tan 0
then from equations (2) and (L)

Q = Ax tan®@



ik NACA TN No. 1768

Equating the pressure coefficients given by equations (A1) and (A2)
at the intersection point and expressing the location of the source ahead
of the rear end of the Interval as a fraction of the Interval length

(:Ax—&, 'r=-°—°%’—g' gives
_ 2
—1 + (—l——j'?-> + 1
cosh T
- —1

Computations from equetion (A3) for values of T from 1.0l to 10.0
show that the ratio &/Ax 1is approximately equal to 0.25. The maximum
veriation in this range, which corresponds to cone angles of 5° to 45°
at M=1.11 (or Mech numbers “From 1.15 to 5.75 for a 10° cons), is
less than *1 percent of Ax.

(A3)

An expression for the pressures on the surface of the cone behind
the intersection point due to the continuous distribution of sources
within the interval may be obtained from equation (1) by use of appropriate
l1limits of integration. The variation of pressure wlth x given by thils
expregsion is closely approximated by equation (A2) for the source
locatlon Just determined. <

It 1s therefore evident that the pressure on the surface of a cone
at and behind the Intersection polnt due to a conbtinuous distribution
of sources glong the axis within an interval Ax from the vertex 1s
closely approximated by a single source located Ax/h- ahead of the end
of the interval. Further computation along these lines has indicated
that this principle may be applled to an interval located in any part
of a conical or parsbolic body of revolution wilth reasonable accuracy,
provided that the pressure function Q is computed (equations (2) and (4))
from the radius and slope of the body surface at the source locatilon.
It appears reasonable to assume, therefore, that within the general
limitations of the linear theory, the principle may be applied to
arbitrary hodles.

—— - — s ——— o e G U U S ey e
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TABLE I
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VALUES FOR GRID (FIG. 1) OF LINES OF CONSTANT PRESSURE COEFFICIENT

IN x,Br PLANE CALCULATED FROM EQUATION (3); SOURCE AT ORIGIN;

PRESSURE FURCTION Q = 0.01

PBr 0 0.01 | 0.02 | 0.03 | 0.05 | 0.09
x

w |0 0.0100 |0.0200 [0.0300 |0.0500 [0.0900

2.00 | .0100| .01kl | .0224 | .0316 | .0510 | .0908

1.00 | .0200| .o22h | .0283 | .0361 | .0538 | .0922
70 | o286 | .0303 | .osuo | .ovay | o576 | .oomn
.50 | .0k00 | .oki2 | .ouk7 | .0500 | .064O | .0995
.30 | .0667 | .067k | .0696 | .0731 | .083% | .1120
.20 | .1000 | .1005 | .1020 | .1O44 | .1118 | .1345
.16 | .1250 .125# .1266 | .1286 | .1346 | .1540
.10 | .2000| .2002 | .2010 | .2022 | .2062 | .2193
.08 | .2500| .2502 | .2508 | .2518 | .2550 | .2657
.05 | .hooo | .4ooi | .k005 | .koil | .%031 | .4100
.03 | .666T| .666T7 | .6670 | .66Th | .6685 | .6727
.02 |1.0000 |1.0000 |1.0002 |{1.000% {1.0012 |1.0040
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TARLE IT
FORM FOR TABULATING 'VALUES OF P ON SURFACE OF BODY DUE TO EACH BOURCE AND VALUES OF x AT WHICE
THEY OCCUR. EXAMPIE: PARABOLIC BODY OF FINENRSS RATIO 12 AT A MACH WUMBER OF 1.h1

[Underlined ard bracketed values are for example] .ot

]
SNE| = | 10| .5 | 03{ 02 {b.g |o.10 |0.08]|0.05 | 003
- - !z
I X
~0.4625 |-0.455 0.2 {-0.421 |0.39% }0.361 }-0.335 {-0.260 10,211 }~0.062 | 0.204 0.4
—.125{ —.397) —.386 | —.368 {—.342|-.309 | —.284 | —.210| —160| —.010 | .255 —.383
—.3625 | —.340] —.331 { —.315 | —.290|—.258 | —.233 | —.159| —.110{ .O4D} 305 —326
—.3125 | —.2Bh} 277 { —.264 | —.238|—.208 { —.183 | —.110{-.060| .090 | .355 - 270
—.2625 | —.230| —.225 | —.210 | —.188|—.156 | —.1 —.060 | 0101 .10 | . —216
—2125 | =I5 —X7L | =159 [—.135|—=.1205 | —. —009| .0h1| .190] .I55 —162
—.1625 | —.124} —.119 { —.107 | —.085|—.055 | —.030 | .OBO| .090| .240 {=—--- -.110
—.1125} —om} —.068 | —.056 | —.034 | —.00% 019 | .090| .1uO{ .288 {—vum- —.0%9
—.0625 | —.020] —.016 { —.005 | _ .o17| o046 | .070 | -1h1{ 190 339 |{~==c- -—.008
-.0125} .oZ7{ .031 | .ok2 | .o84| o9k | .116 | .1BB| .237| .3BE |--—- <Ol
.0375 .08} .08 .093 151 Ak 1167 | W20 289 36 |- . <050
0875 Jd26] .130 L2 L6k | 193 217 | .289 ] .338] 488 {—--- +139
315 | -175] 179 .190 .213| .243 .266 .338] 388l e .186
.1875 21| .225 | .238 .2611 .290 .35 $387 1 436 e -——- -233
.2375 26T .27 285 | .309| .339 363 436 JA8Tde—me—m |- 1. .. . .280
.2875 L3k .320 .33% | .356| .390 Jak | Lhge «325
.3375 .358| .365 .38 4051 .438 R ——-t- «370
.3875 J03] L2 L430 |- L45m | hB8 - 415
4375 sl 460 478 456
4875 -490 :
Qe
£ P —_— .
; Qerag
-0.4625 = | 0,1085] 0.0542| 0.032f 0.0217} 0.0L74| 0.0108 0.0087| 0.005k| 0.0033 0.1085
—25 ® 0725 .0362|. .0o218 .oiys5| L0116} L0073 .005H .0036| 0022 0725
—.3625 ® .0398] .0199| .0119 .00Bo{ .0O6h| .00kO] .003d .0020| .0012 _+0398
—.3125 @ .Oon2| ,0056] .oo3W .o0022} ,0018| .o0011| ,0009 .0006| .0O0O3 0112
[-.2625) ® | —.0018] {-.0059| —.0035 —.002k | [-.0015]| —.0012] ~.0004 —.0006|-.000k [ {-.o11§)
—.2125 o | —.0315{ -.0158}.~.0094 —.0063 | —. 0050 —.0032] —.0025 —.0016]-.0009 —.0315
—.1625 o | —.0475] —.0238} —.0143 —.0095| — 0076 —. OOKE —. 003§ —.0024{ =—mmvn — Ok
—.1125 o | —.0508| —.0297} —.CLTH —.0119| —.0095] —.0059] —. 004 —. 0030} ==wamm . =0
—.0625 o | —.0660] —.0330] —.019§ —.0132 —.0106] —.0066] —.0053] —.0033] ~~~~=- —.0650
—.0125 o | —.0692] —.0346} —.0208 ~.0138| —0111| —.0069} —.005% —. 0035]--~=-= ~.0692
.0375 » | —.0683] —.03%2| —.020% ~.0137{ —.0109] -.0068! —.0055 —.003k| ~===-~ —.0683
.0875 o | —.0633] —~.0316| —.0190 —.0127| —. 0101} —.0063|—.0051 ~.0032]~~w== | -  —,0633
L1375 o | —.0537] —.0268| —.0161) —.0107{ —.0086] —.005L] —.0043} ~—meuc| —mcmunm —.0537
.1875 o | —.0403} —.0202} —. 0121 —. 0081 —. 006k ]| —.00kO]—.0037] ~=meme] wmmeun —.0403
.2375 o | —~.0222| —.0111{ —.0067] —~.00Ul| —.0036] —.0022}—,0018{ ---=-- ——— —.0222
2875 w |0 0 o 0 0 0 feemmee| mamaem ———p—— 0
.3375 @ L0255 .0128| .oo07d .005L| .OOML| —-ceen e D D .0255
.3875 © .0553| .0276| .0164 .0111 20553 o
4375 ™ .0900| .0450 : 0900
48715 I .1290} - e e [ ~125%0
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Figure 1.- Grid of 1lines of constant pressure coefficlent P for supersonic source of § = 0.01
plotted on x,Br plane. Ordinate scale is 10 times abscissa scale.
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Figure 4.- Variation of pressure coefficlent P along the surface of
the parebolic body of fineness ratio 12 due to each source (see
table IT) at a Mach number of L.41.
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| ~Cone pressure (equation an
L~ — vanes and Margolis (refarence 4)
R . © Present method, 20 sachons

@ Present ineltod, 10 seclions
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|- Cone pressure (equation(Al)

A
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Figure 5.- Coamparlson of pressure dletributions Figure 6.- Comparison of pressure distributions
for a pardbolic body of fineness retio 12 for e parabolic bedy of finemess ratio 6
computed at a Mach nurber of 1.41 by the computed at a Mach number of 1.41 by the
polnt -gource method and by the method of point-source method and by the methed of

Jones and Margolis (reference 4). Jones and Margolis (réference k).
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Figure T.- Camparison of caloulsted and experl-
mental pressure distributions for the
AWVIP gt a Mach number of 1.87. Experi-
mental points and solid failring taken
from reference 7.
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Figure 9.~ Comparison of preesure distributicns
calculated by the present method and by the
characteristlics methods of Sauer and Tollmein
wlth wind-tunnel results for the ALVIP at a
Mach mmber of 1.56.

Flgure 10.- Comparison of pressure distributions
calculated at a Mach mmber of 1.41 by the
point-gource mesthod for a parsbolic bedy of
fineness ratio 12 and for the free-fall test
body of finemess ratlo 12.
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